
MECH 442

Mechatronics

LOAD SENSITIVE DRILL

PROJECT REPORT

Koç University

Mechanical Engineering

Instructor:

İsmail Lazoğlu

Team Members:

Ezgi Çevik

Cem Tekin

2

1. Introduction:

In this project a load sensitive drill was designed. During orthopedic surgeries, damaging

the muscles under the bones is a critical problem. The surgeon needs to be precise to avoid the

penetration of the soft tissue. This results a poor stability in the surgery. The problem can be

solved using a drill which will stop working when drilling of the bone is finished. The drill

will be terminated immediately when it moves into another material which will prevent the

drilling of the other material.

Ma et al. designed an intelligent bone drill and control method, which could provide

automatic stop and reverse. They used torque sensor to understand the interaction of the

cutting tool and the bone [1]. The design of the drill is shown in Figure 1.

The automatic cranial drill invented by Li et al. could sense drilling-through and stop

feeding immediately, protecting brain safety of patients by using strain gauge [2].

 Marcos Louredoa , Inaki Diaz, Jorge Juan Gila used an optical encoder to track drill bit’s

position error as shown in Figure 3,4,5 [4].

Figure 1: Intelligent bone drill [3].

1. Ultrasonic transducer

2. Strain torque sensor

3. Drill bit

4. Hall sensor

5. Metal reading dial

7. Annular metal part

8. Strain gages.

Figure 2: Axial force controllable bone drill [3].

14. Resistance strain gage

3

After the literature survey is done, we construct a design by using the relationship between

the current and the torque in the DC motor. The design and the method will be explained in

section 2 - 3, and the results will be discussed in section 4.

Figure 3: DRIBON system [3] Figure 4: Position signals measured

during the drilling process (t = 0 s

bone drilling starts, t = 125 s bone

protrusion starts) [3].

Figure 5: Components of the drilling guide and body of

the system [3].

4

2. Experimental Setup and Budget

1. Spindle Motor: 300 TL

Figure 6: Force and Torque data of drilling a bone [5]

 The figure above shows the force and torque data collected while drilling a femur

bone. From this figure, it can be said that at least a spindle motor with torque of 180 Nmm. In

addition, Pandey and Panda stated that the rotational speed of the drill should be around 3000

rpm [6]. There was not any dc spindle motor in Turkey which satisfied these requirements.

Therefore, we bought the motor on eBay. It is a 400W 48V DC spindle motor whose

maximum torque and speed are 500 Nmm and 12000 rpm respectively.

Figure 7: DC Spindle Motor

5

Figure 8: CAD drawing of the spindle motor with its mounting and the drill bit

2. IRFZ48N Power MOSFET

The MOSFET and an Arduino MEGA are used to control the DC spindle motor by PWM

signal. The control circuit is given below.

Figure 9: MOSFET

6

Figure 10: DC Motor control

3. Drill Bit

Drill bits for bone drilling are different from the regular drill bits. They have to have small

diameters; however, they have to be longer than usual drill bits. They Pandey and Panda

stated that optimal drill bit size for bone drilling is around 3 mm [6]. Therefore, we used a 3

mm drill bit.

Figure 11: Drill bit

4. Stepper Motor. 200 TL

Macavelia et al. found that at least a drill force of 180 N required [5]. We took their

findings into account while selecting the stepper motor.

The motor that we chose is a hybrid NEMA size 34 1.8o 2-phase stepper motor which has

a torque of 2.2 Nm.

Figure 12: Stepper motor

7

Figure 13: The CAD drawing of the stepper motor and coupling

5. Stepper Motor Driver: 380 TL

We bought an H-Bridge, 2 Phase Bi-polar Micro-stepping Drive. It is Power Step 2M982.

The current passing through it is adjustable. The driver and its specifications are shown in the

figures below.

Figure 14: The stepper motor driver

8

Table 1: The stepper motor specifications

6. Coupling: 30 TL

It is just for coupling the ball screw shaft and the stepper motor.

7. Linear Guides: 2x120=240 TL

They are coupled with the ball screw to create linear motion from the rotational motion of

the stepper motor. 2 of them are used to eliminate the bending and drill stays vertical.

Figure 15: The linear guide

8. Ball Screw: 300 TL

The ball screw is used to convert rotational motion of the stepper motor to linear motion.

9

Figure 16: Ball screw

9. Ball bearing: 10 TL

The shaft of the ball bearing was machined for this 12 mm ball bearing. It is mounted on

an aluminum plate.

Figure 17: Ball Bearing

10. Connector

The connector is manufactured from steel to couple the spindle motor, linear guides and

ball bearing.

Figure 18: The CAD drawing of the connector

10

11. Sigma Profiles: 45 TL

Two 600mm sigma profiles with 45mmx45mm cross section are used to eliminate the

bending of the system.

Figure 19: Sigma Profiles

12. Arduino MEGA: 50 TL

Arduino MEGA was used as a microcontroller to provide PWM signal to the DC motor

and get the current data passing through the motor.

Figure 20: Arduino MEGA

11

13. Current sensor: 10 TL

AC712 Current Sensor was used to measure the current passing through the spindle

motor. The sensitivity of the sensor is 66 mV/A and the resolution is 58.6 mA which are

enough because during the drilling, the current increases at least 500 mA.

Figure 21: AC712 Current Sensor

Figure 22: Current Sensor placement

 There was a problem with the measurement of sensor. Since the signal given to the DC

spindle motor is PWM voltage, the current measured was also in PWM signal. Thus, a low

pass filter is used to stabilize the measurement.

Figure 23: Single pole low pass filter

12

14. The assembly

The assembly is shown in the figure below.

Figure 24: The assembly

3. Method:

Figure 25: Force and torque data of femur bone drilling [5] (MUT=drill bit tip inside the

bone)

 In the figure above, the force and torque data collected while bone drilling is shown.

As it can be seen from the figure, both drilling force and torque of the drill depends on the

drilling depth. In addition, when the drill bit tip gets out of the bone, there are significant

changes on both drilling force and torque. Thus, there are two main approaches to accomplish

our objective which is stopping the drill when it is out of the bone. First, monitoring the

drilling force and second monitoring the torque of the drill. We chose the second approach,

because it is a much cheaper solution. For monitoring the drilling force, a load sensor is

needed which can be very expensive. On the other hand, if we measure the current passing

through the drill, we can monitor the torque. To measure the current passing through the drill,

we just bought a 10 TL current sensor which can be powered by Arduino.

13

 In the figure below, current data collected with our system is shown. As it can be seen

from the figure, the current passing through the spindle motor is around 1A. As it enters the

bone, the current starts to increases. At last, the current decreases significantly when it is out

of the bone.

Figure 26: Current data collected by our system

 In the code that we wrote, first the stepper motor starts to rotate which makes the drill

move downwards and the spindle motor starts to rate to get the reference current value. Based

on this reference current value and instantaneous current value, the code defines the stage of

the drilling. There are three stages of drilling which consist of the time periods that the drill

bit (1) before enters the bone, (2) is in the bone, and (3) is out of the bone. In every loop, the

code compares the instantaneous current value with the reference current value and defines

the stage. The code is shared in the Appendix.

 In the first stage, the code checks if the instantaneous current is significantly higher

than the reference current. If it is higher than the reference, the second stage starts. In the

second stage, the code checks if the instantaneous current is almost as low as the reference

current and if it is, stage three starts. In stage three, the stepper motor starts to rotate in the

reverse direction and after the drill bit gets out of the bone completely, the stepper motor and

the spindle motor stop.

 The feed rate is 0.5mm/s and the speed of the spindle motor is around 6000 rpm.

4. Results and Discussion

 All of the parts explained in the Experimental Setup were assembled. The assembly

can be seen in the figure below. As the stepper motor rotates in the clockwise direction, the

spindle motor goes up and as it rotates in the counter clockwise direction, the spindle motor

goes down. Stepper motor is controlled by a micro stepping drive and the spindle motor is

controlled by Arduino’s PWM signal.

14

Figure 27: The Assembly

 We did a lot of experiments on a calf femur bone. We collected current data and wrote

the Arduino code based on the experimental data collected. The current data collected during

a bone drilling experiment is shown in the figure below.

Figure 28: Current data of a bone drilling experiment

15

Figure 29: Bone specimen

We successfully wrote the code where the stepper motor rotates to counter clockwise

to raise the spindle motor as soon as the drill bit gets out of the bone. Either a layer of the

bone or both layers of the bone can be drilled. The videos of the drilling were shared with the

report.

The performance of the drill is good; however, it can be improved. The current data

can be collected at different feed rates. Then the feed rate that allows the fastest current

change at the end of the bone can be selected. In addition, the same experiments can be done

with different drilling speeds. The drilling speed can be selected based on the speed of the

current response when the drill bit gets out of the bone.

Another improvement can be adding a speed feedback to the spindle motor. To make

sure that the drilling speed is in the allowance range, a speed feedback can be very useful. In

addition, with the current feedback, torque of the motor can be controlled while drilling the

bone.

5. Conclusion:

Damaging the soft tissue, is a crucial problem during drilling the bone in orthopedic

surgeries. An automated system, a load sensitive drill is designed and built in this project.

Since the current and the motor torque is proportional, one can sense if the drill is in the bone

or not via the change in the current of the DC motor. To measure the current a current sensor

is used and the motor is terminated when the current is significantly changed. The

experiments were done to prove that the drill is working properly. To conclude, there might

be some improvements that can be implemented on the mechanism such as: collecting data at

different feed rates, adding a speed feedback to the system.

16

References

[1] Yong, D.X., Jun, Q., Zhenyu, L., Yu, Y.D., Zhang, Y., Zhu, J.S., Wang, X.H., Chong,

X.L., Xuesong, H. Intelligent bone drill and control method thereof. CN101530341

(2009).

[2] Fu, H.R., Liu, H.L., Zhang, Y.R. Automated skull drilling mechanism. CN102309354

 (2012).

[3] Min Yang, Changhe Li, Benkai Li, Yaogang Wang, Yali Hou, «Advances and Patents

 about Medical Surgical Operation Bone Drilling Equipment», Recent Patents on

 Mechanical Engineering, 2015, 8, 99-111.

[4] Louredo M, Díaz I, Gil JJ. DRIBON: A mechatronic bone drilling tool. Mechatronics

 2012; 22(8): 1060-66.

[5] Macavelia, T., Salahi, M., Olsen, M., Crookshank, M., Schemitsch, E.H., Ghasempoor, A.,

 Janabi-Sharifi, F., Zdero, R., 2012. Biomechanical measurements of surgical drilling

 force and torque in human versus artificial femurs. J. Biomech. Eng. 134 (12)

(124503-124503)

[6] R.K. Pandey, S.S. Panda, Drilling of bone: a comprehensive review, J. Clin. Orthop.

 Trauma 4 (2013) 15–30.

Appendix

The code for drilling the one layer of the bone

int motorPin = 12; // DC motor

const int sensPin = A4; // current sensor

int mVperAmp = 66; // sensitivity

int RawValue= 0;

int ACSoffset = 2500;

double Voltage = 0;

double Amps = 0;

int direct = 52; // direction pin of the stepper motor

int pulse = 53; // pulse pin of the stepper motor

unsigned long time;

unsigned long timeprev;

int boo = 0; // for taking the current value in 0.1 seconds

int boo2 = 0; // 1 when the dc motor is drillng the bone

int start = 1;

double ref = 0; //reference current

int counter = 0;

17

int counter2 = 0;

void setup() {

 // put your setup code here, to run once:

 pinMode(motorPin,OUTPUT);

 pinMode(sensPin,INPUT);

 pinMode(direct,OUTPUT);

 pinMode(pulse,OUTPUT);

 digitalWrite(direct,HIGH); // HIGH down, LOW up

 digitalWrite(pulse,LOW);

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 if (counter > 5000) {

 analogWrite(motorPin,0);

 }

 else {

 if (start == 1) {

 analogWrite(motorPin,255);

 delay(5000);

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 time = millis();

 if (time>10000) {

 start =0;

 int i =0;

 while (i < 10){

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 timeprev=time;

 time = millis();

 time = time % 10;

 if (time < timeprev) {

 RawValue = RawValue+analogRead(sensPin)/10;

 i++;

 }

 }

 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV

 ref = ((Voltage - ACSoffset) / mVperAmp);

 RawValue=0;

 Serial.print("Reference current is ");

 Serial.print(ref);

 Serial.println("A");

 }

18

 }

 else {

 if (Amps > ref-0.25 & boo2 == 1) {

 analogWrite(motorPin,124);

 digitalWrite(direct,LOW);

 digitalWrite(pulse,HIGH);

 delayMicroseconds(200000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(200000);

 counter++;

 }

 else {

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 int i = 0;

 while (i < 10){

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 timeprev=time;

 time = millis();

 time = time % 10;

 if (time < timeprev) {

 RawValue = RawValue+analogRead(sensPin)/10;

 i++;

 }

 }

 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV

 Amps = ((Voltage - ACSoffset) / mVperAmp);

 RawValue=0;

 if (Amps<ref-0.3){

 counter2++;

 }

 if (counter2>4){

 boo2=1;

 }

 Serial.println(Amps);

 }

 }

 timeprev = time;

 }

}

The code for drilling the both layers

int motorPin = 12; // DC motor

const int sensPin = A4; // current sensor

int mVperAmp = 66; // sensitivity

19

int RawValue= 0;

int ACSoffset = 2500;

double Voltage = 0;

double Amps = 0;

int direct = 52; // direction pin of the stepper motor

int pulse = 53; // pulse pin of the stepper motor

unsigned long time;

unsigned long timeprev;

int boo = 0; // for taking the current value in 0.1 seconds

int boo2 = 0; // 1 when the dc motor is drillng the bone

int start = 1;

double ref = 0; //reference current

int counter = 0;

int counter2 = 0;

int counter3 = 0;

void setup() {

 // put your setup code here, to run once:

 pinMode(motorPin,OUTPUT);

 pinMode(sensPin,INPUT);

 pinMode(direct,OUTPUT);

 pinMode(pulse,OUTPUT);

 digitalWrite(direct,HIGH); // HIGH down, LOW up

 digitalWrite(pulse,LOW);

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 if (counter > 5000) {

 analogWrite(motorPin,0);

 }

 else {

 if (start == 1) {

 analogWrite(motorPin,255);

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 time = millis();

 if (time>10000) {

 start =0;

 int i =0;

 while (i < 5){

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 timeprev=time;

 time = millis();

 time = time % 20;

 if (time < timeprev) {

20

 RawValue = RawValue+analogRead(sensPin)/5;

 i++;

 }

 }

 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV

 ref = ((Voltage - ACSoffset) / mVperAmp);

 RawValue=0;

 Serial.print("Reference current is ");

 Serial.print(ref);

 Serial.println("A");

 }

 }

 else {

 if (Amps > ref-0.15 & boo2 == 3) {

 analogWrite(motorPin,124);

 digitalWrite(direct,LOW);

 digitalWrite(pulse,HIGH);

 delayMicroseconds(200000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(200000);

 counter++;

 }

 else if (boo2 == 2) {

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 int i = 0;

 while (i < 5){

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 timeprev=time;

 time = millis();

 time = time % 20;

 if (time < timeprev) {

 RawValue = RawValue+analogRead(sensPin)/5;

 i++;

 }

 }

 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV

 Amps = ((Voltage - ACSoffset) / mVperAmp);

 RawValue=0;

 if (Amps<ref-0.4){

 counter3++;

 }

 if (counter3>10){

 boo2=3;

21

 }

 Serial.println(Amps);

 }

 else if (Amps > ref-0.2 & boo2 == 1) {

 boo2 = 2;

 }

 else {

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 int i = 0;

 while (i < 5){

 digitalWrite(pulse,HIGH);

 delayMicroseconds(500000);

 digitalWrite(pulse,LOW);

 delayMicroseconds(500000);

 timeprev=time;

 time = millis();

 time = time % 20;

 if (time < timeprev) {

 RawValue = RawValue+analogRead(sensPin)/5;

 i++;

 }

 }

 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV

 Amps = ((Voltage - ACSoffset) / mVperAmp);

 RawValue=0;

 if (Amps<ref-0.3){

 counter2++;

 }

 if (counter2>4){

 boo2=1;

 }

 Serial.println(Amps);

 }

 }

 timeprev = time;

 }

}

